Dislocation density in cellular rapid solidification using phase field modeling and crystal plasticity
نویسندگان
چکیده
A coupled phase field and crystal plasticity model is established to analyze formation of dislocation structures residual stresses during rapid solidification additively manufactured 316L stainless steel. The work focuses on investigating the role microsegregation related intra-grain cellular microstructure 316L. Effect shrinkage considered along with mediated plastic flow material solidification. Different microstructures are analyzed characteristics cell core, boundary segregation pools discussed respect heterogeneity density distributions stresses. Quantitative comparison experimental data given evaluate feasibility modeling approach.
منابع مشابه
Intermittent dislocation density fluctuations in crystal plasticity from a phase-field crystal model.
Plastic deformation mediated by collective dislocation dynamics is investigated in the two-dimensional phase-field crystal model of sheared single crystals. We find that intermittent fluctuations in the dislocation population number accompany bursts in the plastic strain-rate fluctuations. Dislocation number fluctuations exhibit a power-law spectral density 1/f2 at high frequencies f. The proba...
متن کاملMultiscale Modeling of Structurally-Graded Materials Using Discrete Dislocation Plasticity Models and Continuum Crystal Plasticity Models
A multiscale modeling methodology that combines the predictive capability of discrete dislocation plasticity and the computational efficiency of continuum crystal plasticity is developed. Single crystal configurations of different grain sizes modeled with periodic boundary conditions are analyzed using discrete dislocation plasticity (DD) to obtain grain size-dependent stress-strain predictions...
متن کاملDerivation of the phase-field-crystal model for colloidal solidification.
The phase-field-crystal model is by now widely used in order to predict crystal nucleation and growth. For colloidal solidification with completely overdamped individual particle motion, we show that the phase-field-crystal dynamics can be derived from the microscopic Smoluchowski equation via dynamical density-functional theory. The different underlying approximations are discussed. In particu...
متن کاملPhase-Field Simulation of Solidification With Density Change
Phase-field models of solidification with convection often assume the existence of a single (mixture) velocity at any location inside the diffuse interface, and the phase-field, φ, is advected by this mixture velocity. In this paper, the advection of the phase-field is examined for a one-dimensional normal flow to a solidification front induced by a density difference between the solid and liqu...
متن کاملPhase-field formulation for quantitative modeling of alloy solidification.
A phase-field formulation is introduced to simulate quantitatively microstructural pattern formation in alloys. The thin-interface limit of this formulation yields a much less stringent restriction on the choice of interface thickness than previous formulations and permits one to eliminate nonequilibrium effects at the interface. Dendrite growth simulations with vanishing solid diffusivity show...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Plasticity
سال: 2022
ISSN: ['1879-2154', '0749-6419']
DOI: https://doi.org/10.1016/j.ijplas.2021.103139